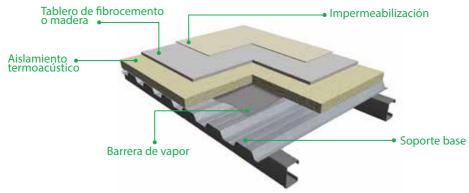


KUBIDECK

Losa termoacústica, ultraliviana, impermeable, para último piso.


COMPONENTES

Desde la capa inferior

- * Kubilosa placa colaborante colocada sobre estructura soportante.
- * Barrera de vapor para áreas con alta humedad relativa, alta temperatura y poca ventilación.
- Placas para aislamiento de poliuretano o poliisocianurato (Densdeck).
- Tablero de fibrocemento.
- Membrana asfáltica PVC o panel metálico capa impermeabilizante que puede ser TPO, EPDM, PVC o panel metálico.

BENEFICIOS

- Muy bajo peso comparada con la losa tradicional menos de 30 kilos por metro cuadrado.
- No sufre típicas fisuras y goteras de las losas tradicionales.
- Solución termoacústica.
- No acumula calor.
- * Requiere una estructura soportante liviana.

LOSAS

CARACTERÍSTICAS

PROPIEDADES DEL PANEL

AISLAMIENTO	DENSIDAD (KG/m3)	ESPESOR (PULG)	R (m2 . °K/W)
POLIURETANO	38	1.5	8.8
	38	2.0	12.0
	38	2.5	14.9
	38	3.0	17.9
POLIESTIRENO EXPANDIDO	18	2.0	7.70
	18	3.0	11.55
	18	4.0	15.40
LANA DE ROCA	100	2	5.8
	100	3.0	9.5
	100	4.0	12.9

Es una medida de resistencia térmica (al ujo de calor) utilizados en la construcción de edi cios e industrias. Es la razón de la diferencia de temperatura a través de un aislante y el ujo de calor por unidad de superficie. $R = \Delta T/QA$

Las unidades de (R-valores) en el Sistema Internacional SI, es metros cuadrados por grados kelvin por vatio $(m2 \cdot oK/W)$ Cuando más grande es el R mejor es el aislante.

